American University of Beirut
 MATH 201

Calculus and Analytic Geometry III
Fall 2005-2006
quiz \# 1

Name: \qquad ID \#:

1. (12 points, 6 points each) Find each of the following limits:
a) $\lim _{n \rightarrow+\infty} \frac{n^{2 / n} \sin ^{2} n}{\sqrt{n}+10}$
b) $\lim _{n \rightarrow+\infty} \frac{(n+1)^{n+1}}{(2 n+1) n^{n}}$
2. (40 points, 8 points each) Determine if the following series converges or diverges. Justify your answers
a) $\sum_{n=0}^{+\infty} \frac{1}{e^{2 n}+n}$
b) $\sum_{n=0}^{+\infty} n^{2 n} e^{-n}$
c) $\sum_{n=1}^{+\infty} \frac{\ln ^{3} n}{n \sqrt{n}}$
d) $\sum_{n=1}^{+\infty} \frac{(-1)^{n} \cos n}{2^{n}}$
e) $\sum_{n=1}^{+\infty} \frac{1}{n^{\ln n / n}}$
3. (14 points) Find $\sum_{k=1}^{\infty}\left[\frac{k!-6^{k}}{3^{k} \cdot(k-1)!}\right]$
4. a) (15 points) Find the interval of convergence of the power series $\sum_{n=2}^{+\infty} \frac{(2 x-1)^{n}}{4^{n} \ln n}$ (be sure to check convergence at the endpoints)
b) (3 points) For what value(s) of x for which the series converges (i) absolutely? conditionally?
5. Let $f(x)=x e^{-x^{2}}$.
a) (5 points) Find the Maclaurin series expansion of f.
b) (5 points) How accurate is the approximation $f(x)=x-x^{3}$ on the interval $[0 ; 0.1]$?
c) (6 points) Find $f^{(n)}(0)$.
(hint: you may notice that f is odd !)
